Regioselectivity of the substitution for the nitro group in 2,4,6-trinitrobenzonitrile under the action of thiols. The synthesis of 4,6-dinitro derivatives of benzo-annelated sulfur-containing heterocycles

Igor L. Dalinger, Tat'yana I. Cherkasova, Valerian M. Khutoretskii and Svyatoslav A. Shevelev*

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 117913 Moscow, Russian Federation. Fax: +7 095 135 5328; e-mail: shevelev@cacr.ioc.ac.ru

DOI: 10.1070/MC2000v010n02ABEH001220

Conditions for the regioselective substitution for a nitro group in the *ortho*-position in 2,4,6-trinitrobenzonitrile under the action of thiols (PhCH₂SH, HSCH₂CO₂Et or PhSH) in the presence of K_2CO_3 or KOH were found, and the intramolecular cyclization of the *ortho*-fragments –SX and –CN (X = Cl or CH₂CO₂Et) was performed to afford 3-chloro-4,6-dinitrobenzo[d]isothiazole and 3-amino-2-ethoxycarbonyl-4,6-dinitrobenzo[b]thiophene, respectively.

We are concerned with the chemistry of primary conversion products of 2,4,6-trinitrotoluene (TNT) in the context of the utilisation of this explosive. These products include 2,4,6-trinitrobenzonitrile (TNBN), which can be easily prepared from TNT by the treatment with nitrosyl chloride. One of the promising synthetic applications of TNBN is the production of benzo-annelated heterocycles, which can be performed, in particular, by the selective replacement of a nitro group in the *ortho*position with a unit capable of intramolecular cyclization with the nitrile group.

Scheme 1 Reagents, conditions and results: i, 1 equiv. PhCH₂SH + 1.8 equiv. K_2CO_3 ; i_1 , DMF/H₂O (4:1, v/v; 0.42 M PhCH₂SH), 0–2 °C, 3 h, 91% yield of $\mathbf{1a} + \mathbf{1b}$, $\mathbf{1a} : \mathbf{1b} = 2 : 1$; i_2 , MeCN (0.42 M PhCH₂SH), 80 °C (boiling), 3 h, 90% yield of $\mathbf{1a} + \mathbf{1b}$, $\mathbf{1a} : \mathbf{1b} = 3 : 1$; i_3 , toluene (0.25 M PhCH₂SH), 110 °C (boiling), 8 h, 40% yield of $\mathbf{1a} + \mathbf{1b}$, $\mathbf{1a} : \mathbf{1b} = 5 : 1$; ii, $\mathbf{1a} : \mathbf{1b} = 5 : 1$, 7 equiv. SO₂Cl₂/DCE, boiling, 8 h, 50% yield of 3 (in terms of $\mathbf{1a}$); iii, 1 equiv. HSCH₂CO₂Et + 1.8 equiv. KOH, MeCN/H₂O (4:1, v/v, 0.42 M HSCH₂CO₂Et), 0 °C, 0.5 h, 20 °C, 3 h, 54% yield of $\mathbf{5}$; iv, 1 equiv. PhSH + 1.8 equiv. K_2 CO₃; iv₁, DMF/H₂O (4:1, v/v; 0.42 M PhSH) 0–2 °C, 3 h, 76% yield of $\mathbf{6a} + \mathbf{6b}$, $\mathbf{6a} : \mathbf{6b} = 2 : 1$; iv₂, toluene, (0.25 M PhSH), 110 °C (boiling), 4 h, 80% yield of $\mathbf{6a}$.

We found that in the reaction of TNBN with PhCH₂SH in the presence of K₂CO₃ both *ortho* and *para* nitro groups were replaced with the PhCH₂S unit: an isomer mixture of *ortho* and *para* sulfides **1a** and **1b** was formed, the ratio between which depends on the polarity of the solvent (Scheme 1, i).

It can be seen that the fraction of *ortho* substitution considerably increased with decreasing polarity of solvents in the order aqueous DMF, MeCN and PhMe (Scheme 1, i, i₁–i₃). We used a mixture (5:1) of *ortho* and *para* isomers **1a** and **1b** prepared in a medium of PhMe for the intramolecular cyclization starting from **1a** (*via* **2a**). It is well known that the ArS–CH₂Ph bond is easily cleaved under the action of chlorinating agents to form ArSCl.³ It is also known that spontaneous intramolecular cyclization with the formation of 3-chlorobenzo[*d*]-isothiazoles proceeds in the presence of CN and SCl units in the *ortho* position.⁴ Indeed, 3-chloro-4,6-dinitrobenzo[*d*]isothiazole **3** (Scheme 1, ii) was prepared by the treatment of the above mixture of sulfides **1a** and **1b** with SO₂Cl₂.

The substitution for the *para* nitro group was not observed in the reaction of HSCH₂CO₂Et with TNBN (in the presence of KOH in aqueous acetonitrile); 3-amino-2-ethoxycarbonyl-4,6-dinitrobenzo[b]thiophene 5, a representative of previously unknown 4,6-dinitrobenzo[b]thiophenes (Scheme 1, iii), was the only reaction product.

According to published data,⁵ benzothiophene **5** is formed by base-catalysed intramolecular cyclization of *ortho*-substitution product **4a** (Scheme 1, iii).

A representative of aromatic thiols, PhSH, reacting with TNBN (in the presence of K_2CO_3) in aqueous DMF gives a mixture of isomer *ortho* and *para* sulfides **6a** and **6b** (Scheme 1, iv, iv₁). However, the reaction proceeds regiospecifically in a toluene medium: only a nitro group in the *ortho* position of TNBN is replaced, and the only product, *ortho*-sulfide **6a**, is formed in high yield (Scheme 1, iv, iv₂).

The identity of the individual products or isomer mixtures obtained was supported by ¹H and ¹³C NMR spectroscopy, mass spectrometry, IR spectroscopy and elemental analysis. The yields in Scheme 1 are specified for isolated individual products or purified isomer mixtures. At the same time, the ratio between *ortho* and *para* isomers (¹H NMR data) is given for isolated crude reaction products. In all cases, the reaction was performed until the complete conversion of TNBN.[†]

 $^{^\}dagger$ 1H NMR spectra were recorded on a Bruker AM-300 spectrometer, solvent $[^2H_6]DMSO.$

^{3:} mp 200–202 °C (PriOH). ¹H NMR, δ : 8.9 (s, 1H, H⁷), 9.1 (s, 1H, H⁵). ¹³C NMR, δ : 112.18, 112.73, 120.21, 129.30, 144.95, 149.42, 150.37. 5: mp 200 °C (PriOH). ¹H NMR, δ : 1.3 (t, 3H, OEt), 4.3 (qw, 2H, OEt), 6.6 (br. s, 2H, NH₂), 8.7 (s, 1H, H⁷), 9.4 (s, 1H, H⁵). ¹³C NMR, δ : 14.22, 61.25, 105.79, 116.89, 124.06, 124.93, 125.45, 141.62, 144.90, 145.89, 163.65.

⁶a: mp 110–112 °C (PrⁱOH). 1 H NMR, δ : 7.7 (m, 5H, Ph), 8.0 (s, 1H, H³), 8.7 (s, 1H, H⁵).

This work was supported by the International Science and Technology Centre (ISTC) (grant no. 419).

References

1 V. A. Tartakovsky, S. A. Shevelev, M. D. Dutov, A. Kh. Shakhnes, A. L. Rusanov, L. G. Komarova and A. M. Andrievsky, in *Conversion Concepts for Commercial Applications and Disposal Technologies of Energetic Systems*, ed. H. Krause, Kluwer Academic Publishers, Dordrecht, 1997, p. 137.

- 2 M. E. Sitzman and J. C. Dacons, J. Org. Chem., 1973, 38, 4363.
- 3 (a) D. M. Tink and J. T. Strupczewski, *Tetrahedron Lett.*, 1993, **34**, 6525; (b) N. Kharasch and R. B. Langford, *J. Org. Chem.*, 1963, **28**, 1903.
- 4 J. R. Beck and J. A. Yahner, J. Org. Chem., 1978, 43, 1604.
- 5 J. R. Beck, J. Org. Chem., 1972, 37, 3224.

Received: 2nd November 1999; Com. 99/1548